Effective detection of metal surface defects based on double-line laser ultrasonic with convolutional neural networks

Author:

Liu Zixi1,Hu Zhengliang2,Wang Longxiang1,Zhou Tianshi1,Chen Jintao3,Zhu Zhenyu1,Sui Hao1,Zhu Hongna1ORCID,Li Guangming4

Affiliation:

1. School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China

2. College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China

3. School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China

4. National Innovation Institute of Defense Technology, Fengtai, Beijing, 100071, China

Abstract

The time–frequency analysis by smooth Pseudo-Wigner-Ville distribution (SPWVD) is utilized for the double-line laser ultrasonic signal processing, and the effective detection of the metal surface defect is achieved. The double-line source laser is adopted for achieving more defects information. The simulation model by using finite element method is established in a steel plate with three typical metal surface defects (i.e. crack, air hole and surface scratch) in detail. Besides, in order to improve the time resolution and frequency resolution of the signal, the SPWVD method is mainly used. In addition, the deep learning defect classification model based on VGG convolutional neural network (CNN) is set up, also, the data enhancement method is adopted to extend training data and improve the defects detection properties. The results show that, for different types of metal surface defects with sub-millimeter size, the classification accuracy of crack, air holes and scratch surface are 94.6%, 94% and 94.6%, respectively. The SPWVD and CNN algorithm for processing the laser ultrasonic signal and defects classification supplies a useful way to get the defect information, which is helpful for the ultrasonic signal processing and material evaluation.

Funder

Department of Science and Technology of Sichuan Province

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3