Affiliation:
1. Hebei Province Key Laboratory of Test/Measurement Technology and Instrument, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract
A metal-dielectric-metal (MDM) waveguide coupled disk cavity structure with bimetallic baffle is proposed, which bases on the transmission characteristics of surface plasmon polaritons (SPPs) in subwavelength structure, and the absorption material InGaAsP is filled in the Fabry–Perot (F-P) cavity and disk cavity. The Fano resonance is an asymmetric spectral line formed by the destructive interference between the wide continuous state generated by the F-P resonator and the narrow discrete state interference generated by the disk cavity. Based on the coupled mode theory, the formation mechanism of the Fano resonance of the structure is qualitatively analyzed. The structure was simulated by finite element method to quantitatively analyze the influence of structural parameters and absorption material InGaAsP on the refractive index sensing characteristics. The proposed sensor yields sensitivity higher than 1360 nm/refractive index unit (RIU) and a figure of merit of [Formula: see text] by optimizing the geometry parameters and filling the absorption material InGaAsP. This structure has potential applications for high integration of nanosensors, slow-light devices, and nano-optical switches.
Funder
the National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
China Postdoctoral Fund Project
China National Scholarship Fund Project
Hebei University Science and Technology Research Project
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献