Affiliation:
1. Xi’an Institute of Optics and Precision Mechanics, Xi’an 710119, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
Breaking Lorentz reciprocity is one necessary condition of optical isolator design. Unidirectional wavelength-mode conversion will be realized in a time-dependent system through a short operating range. Based on plasma dispersion effect, generate space-asymmetric periodical time-space modulation on silicon waveguide, and non-reciprocal propagation is realized in the waveguide. The designed unidirectional wavelength-mode conversion waveguide demonstrated that in the forward direction, input 1.55 [Formula: see text]m fundamental mode light signal and then output 1.5492 [Formula: see text]m is of 1st-order mode, while in the backward direction, input 1.5492 [Formula: see text]m is of 1st-order mode light signal and then output 1.5484 [Formula: see text]m is of fundamental mode. Based on this non-reciprocal structure, mode conversion waveguide and two-ring resonance filters were designed then, to accomplish on-chip optical isolation. The scale of the designed isolator is 160 [Formula: see text]m × 60 [Formula: see text]m, and the isolation is 21 dB, revealing perfect application potential.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献