Numerical simulation of turbulent thermal convection based on LBM

Author:

Xia Yuxian1ORCID,Fu Yuan2,Li Jiahua3,Qiu Xiang2,Qian Yuehong4,Liu Yulu2

Affiliation:

1. School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China

2. School of Science, Shanghai Institute of Technology, Shanghai 201418, China

3. College of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai 201418, China

4. School of Mathematical Sciences, Soochow University, Suzhou 215006, China

Abstract

The two-dimensional (2D) turbulent thermal convection is numerically investigated by using Lattice Boltzmann Method. The 2D turbulence is considered as 2D channel flow where the flow is forced by the arrays of adiabatic cylinders placed in the inlet and wall boundary of 2D channel, which is heated uniformly from the inlet as to inspire the paradigmatic motion of thermal convection. It is found that the spacing vortex number density distribution in the large-scale range [Formula: see text], based on the Liutex vortex definition criterion, which is in fair agreement with the Benzi prediction. The energy spectrum of the Liutex field [Formula: see text]. The scaling behavior of full-field energy spectrum in the large scale is [Formula: see text]. The temperature spectrum in the large-scale range is found to be approximate to [Formula: see text], which is according with the Bolgiano theory of 2D buoyancy driven turbulence. The energy flux cascades to the large scale, the enstrophy cascades to small scale. The moments of the energy dissipation field [Formula: see text] coarse grained at the scale [Formula: see text] have the power-law behaviors with the scale [Formula: see text]. The velocity intermittency measured by PDF exists in large-scale range of 2D turbulent thermal convection. The measured scaling exponents [Formula: see text] are determined by a lognormal formula. The measured intermittency parameter is [Formula: see text], which denotes the strong intermittency in the large-scale range of 2D turbulent thermal convection.

Funder

Shanghai Education Development Foundation and Shanghai Municipal Education Commission in China

National Key R&D Program of China

Nature Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3