SPIN TRANSPORT FOR A QUANTUM WIRE WITH WEAK DRESSELHAUS SPIN-ORBIT COUPLING

Author:

FU XI12,CHEN ZESHUN1,ZHONG FENG1,KONG YONGHONG1

Affiliation:

1. Department of Electronics, Hunan University of Science and Engineering, Yongzhou 425100, China

2. Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, Hunan Normal University, Ministry of Education, Changsha 410081, China

Abstract

We investigate theoretically the electron transport properties of a quantum wire (QW) non-adiabatically connected to two normal leads with weak Dresselhaus spin-orbit coupling (DSOC). Using the scattering matrix method and Landauer–Büttiker formula within the effective free-electron approximation, we have calculated the spin-dependent conductances G↑/↓ and spin polarization Pz of a hard-wall potential confined QW. It is demonstrated that regardless of the existence of DSOC G↑/↓ and Pz present oscillation structures near the subband edges of QW, and the number of quantized conductance plateaus is determined by the number of propagation modes in two leads. Moreover, the DSOC induces splitting of spin-up and spin-down conductance plateaus as well as the existence of spin polarization (Pz ≠ 0), and the enhancement of Dresselhaus strength destroys the conductance plateaus for the wide QW case. The above results indicate that the spin-dependent conductances and Pz are strongly dependent on the Dresselhaus strength which is the physical basis for spin transistor.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3