Dark-soliton collisions for a coupled AB system in the geophysical fluids or nonlinear optics

Author:

Xie Xi-Yang1,Meng Gao-Qing1

Affiliation:

1. Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China

Abstract

Under investigation in this paper is a coupled AB system, which describes the marginally unstable baroclinic wave packets in the geophysical fluids or ultra-short pulses in nonlinear optics. As the dark solitons are more resistant against various perturbations than the bright ones, we aim to investigate the dark solitons in the geophysical fluids or nonlinear optics. Dark one- and two-soliton solutions for such a system are derived based on the bilinear forms and propagations of the one solitons and collisions between the two solitons are graphically illustrated and analyzed. Further, influences of the coefficients [Formula: see text] and [Formula: see text] on the solitons are discussed, where [Formula: see text] is a parameter measuring the state of the basic flow and [Formula: see text] is the group velocity. The dark-one solitons with invariant shapes and amplitudes are viewed, and elastic collisions between the dark-two solitons are observed. Also, elastic collision between the bright and dark solitons is viewed, and the dark soliton is found to possess two peaks. [Formula: see text] is found to affect the widths of the dark-one solitons and the travelling directions of the dark-two solitons. It is shown that [Formula: see text] cannot influence shapes of [Formula: see text] and [Formula: see text], but affect the plane of the one soliton for [Formula: see text], and the two-peak dark soliton for [Formula: see text] changes to the single-peak one with the value of [Formula: see text] decreasing, where [Formula: see text] and [Formula: see text] are the packets of short waves and [Formula: see text] is the mean flow.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3