Affiliation:
1. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
Fluorescence microscopy possesses the advantages of high resolution, high sensitivity, molecular specificity and noninvasiveness, providing an important tool in life science research. The multifocal array and 3D structured light are two kinds of important light fields that are often used in scanning fluorescence microscopy systems and wide-field fluorescence microscopy systems. However, traditional methods for generating multifocal arrays and 3D structured light illumination rely on various bulk optical components, making it challenging to achieve compact optical systems. Besides, generating these two types of illumination typically requires two separate and independent optical systems, hindering the integration of different types of fluorescence microscopy systems. Here, a dielectric metasurface is proposed that can achieve the switching between multifocal arrays and 3D structured light through polarization state modulation, greatly simplifying the illumination optics of fluorescence microscopy systems and facilitating the integration of different types of fluorescence microscopy systems.
Funder
National Natural Science Foundation of China
Natural Science Basis Research Plan in Shaanxi Province of China
Youth Innovation Promotion Association of CAS
Publisher
World Scientific Pub Co Pte Ltd
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献