Affiliation:
1. College of Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
Abstract
In this paper, we calculated the defect formation energy of oxygen vacancies with different charge states (0, +1, +2) in beryllium oxide crystal by using density functional theory (DFT). Based on defect formation energy, the positions of charge transition levels are obtained. However, there is a well-known problem that DFT will underestimate the band gap, which leads to the positions of charge transition levels are arguable. To obtain more accurate charge transition levels, we employ the hybrid functionals (HSE) to relieve the band edge problem, as well as use the finite-size corrections (FNV) to correct the defect formation energy. After obtaining the location of the charge transition level, we obtain a reliable description of the optical line shape of the F/F[Formula: see text] center containing electron–phonon coupling. The absorption spectra of the F center and F[Formula: see text] center peak at 7.1 eV and 6.3 eV, respectively. The luminescence band of the F center peaks at 4.7 eV. Furthermore, we speculate that the luminescence band near 3.7 eV is assigned to the F[Formula: see text] center.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献