Wrapper-Based Feature Selection and Optimization-Enabled Hybrid Deep Learning Framework for Stock Market Prediction

Author:

Patil Pankaj Rambhau1,Parasar Deepa2,Charhate Shrikant3

Affiliation:

1. Department of Computer Science & Engineering, Amity School of Engineering and Technology, Amity University Maharashtra, India

2. Department of Computer Science & Engineering, Amity University, Maharashtra, India

3. Department of Civil Engineering, Amity University, Maharashtra, India

Abstract

Stock market is a significant element of economic market. Accurate forecasting of stock market is very helpful to shareholders because future prediction of a stock value will elevate the profits of investors. The data acquired from the stock market is a time-series data, in which the values of the stock prices are inherently varied with respect to time. Due to its complexity nature and nonlinearity characteristics, the prediction of stock market becomes very difficult and still it remains a challenging task. In order to cope up with such limitation, this research proposes an effective strategy called Deep Recurrent Rider LSTM to provide an accurate detection of stock market values. The accurate forecasting of stock market is carried out with two classifiers, namely Rider Deep Long Short-Term Memory (Rider Deep LSTM) and Deep Recurrent Neural Network (Deep RNN). The Rider Deep LSTM is derived by the integration of Rider concept with Deep LSTM, whereas the Deep RNN is trained using the proposed Shuffled Crow Search Optimization (SCSO). Moreover, the SCSO is derived by the integration of Shuffled Shepherd Optimization (SSO) algorithm and Crow Search Algorithm (CSA). Finally, the predicted output is determined based on the error condition. Furthermore, the proposed Deep Recurrent Rider LSTM achieved the MSE and RMSE of 0.018 and 0.132 that shows higher performance with better accuracy. The stock market prediction using the proposed classification model is accurate and improves the effectiveness of the classification.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Medicine,Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3