IoT Enabled Soil Moisture and Heat Level Prediction Using Chimp Shuffled Shepherd Optimization-Based Deep LSTM for Plant Health Monitoring

Author:

Bhamidipati Kishore1,Sriramakrishnan G. V.2,Daniya T.3,Ragaventhiran J.4

Affiliation:

1. Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

2. Department of Computer Science and Engineering, Mohan Babu University, Tirupati 517102, India

3. Department of Information Technology, GMR Institute of Technology, Rajam, Andhra Pradesh 532127, India

4. Department of CSE, School of Computer Science and Engineering and Information Science, Presidency University, Bengaluru, 560064 India

Abstract

Plant health monitoring is a very significant task in any agriculture-based environment. The Internet of Things (IoT) plays an important role in the monitoring of plant diseases. IoT is required to obtain data through sensor nodes for finding soil moisture and heat level. Even though different methods are available to monitor the health of plants, observing heat level and soil moisture still results a complex task. Thus, this paper introduces a novel chimp shuffled shepherd optimization (ChSSO) by the integration of chimp optimization algorithm (ChOA) and shuffled shepherd optimization (SSOA) to perform the selection of cluster head (CH) and routing process. The proposed ChSSO is trained using the deep LSTM which is developed for predicting soil moisture and heat level conditions in IoT network to monitor the health of plants. The proposed method obtained higher performance by the metrics, like testing accuracy and precision of 0.937, and 0.926 for 100 nodes and the values of 0.940, and 0.940 for 150 nodes using the LDAS dataset.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Medicine,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3