Modeling Tag-Aware Recommendations Based on User Preferences

Author:

Hunag Jiajin1,Yuan Xi1,Zhong Ning12,Yao Yiyu13

Affiliation:

1. International WIC Institute, Beijing University of Technology, Beijing, China

2. Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Japan

3. Department of Computer Science, University of Regina, Saskatchewan, Canada

Abstract

A recommender system aims at recommending items that users might be interested in. With an increasing popularity of social tagging systems, it becomes urgent to model recommendations on users, items, and tags in a unified way. In this paper, we propose a framework for studying recommender systems by modeling user preferences as a relation on (user, item, tag) triples. We discuss tag-aware recommender systems from two aspects. On the one hand, we compute associations between users and items related to tags by using an adaptive method and recommend tags to users or predict item properties for users. On the other hand, by taking the similarity-based recommendation as a case study, we discuss similarity measures from both qualitative and quantitative perspectives and k-nearest neighbors and reverse k-nearest neighbors for recommendations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3