Alpha Skew Gaussian Naïve Bayes Classifier

Author:

Ara Anderson1ORCID,Louzada Francisco2

Affiliation:

1. Department of Statistics, Federal University of Paraná, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba-PR, PO Box 19081, 81531-980, Brazil

2. Institute of Mathematical and Computer Sciences, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos-SP, 13566-590, Brazil

Abstract

The main goal of this paper is to introduce a new procedure for a naïve Bayes classifier, namely alpha skew Gaussian naïve Bayes (ASGNB), which is based on a flexible generalization of the Gaussian distribution applied to continuous variables. As a direct advantage, this method can accommodate the possibility to handle with asymmetry in the uni or bimodal behavior. We provide the estimation procedure of this method, and we check the predictive performance when compared to other traditional classification methods using simulation studies and many real datasets with different application fields. The ASGNB is a powerful alternative to classification tasks when lie the presence of asymmetry of bimodality in the data and outperforms well when compared to other traditional classification methods in most of the cases analyzed.

Funder

FAPESP

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of fruit using a flexible tactile sensor array;Instrumentation Science & Technology;2024-01-25

2. Data‐driven analysis and predictive modeling on COVID‐19;Concurrency and Computation: Practice and Experience;2022-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3