HSCWMA: A New Hybrid SCA-WMA Algorithm for Solving Optimization Problems

Author:

Parizi Morteza Karimzadeh1ORCID,Keynia Farshid2,Bardsiri Amid Khatibi1

Affiliation:

1. Department of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran

2. Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

Abstract

Hybrid metaheuristic algorithms have recently become an interesting topic in solving optimization problems. The woodpecker mating algorithm (WMA) and the sine cosine algorithm (SCA) have been integrated in this paper to propose a hybrid metaheuristic algorithm for solving optimization problems called HSCWMA. Despite the high capacity of the WMA algorithm for exploration, this algorithm needs to augment exploitation especially in initial iterations. Also, the sine and cosine relations used in the SCA provide the good exploitation for this algorithm, but SCA suffers the lack of an efficient process for the implementation of effective exploration. In HSCWMA, the modified mathematical search functions of SCA by Levy flight mechanism is applied to update the female woodpeckers in WMA. Moreover, the local search memory is used for all search elements in the proposed hybrid algorithm. The goal of proposing the HSCWMA is to use exploration capability of WMA and Levy flight, utilize exploitation susceptibility of the SCA and the local search memory, for developing exploration and exploitation qualification, and providing the dynamic balance between these two phases. For efficiency evaluation, the proposed algorithm is tested on 28 mathematical benchmark functions. The HSCWMA algorithm has been compared with a series of the most recent and popular metaheuristic algorithms and it outperforms them for solving nonconvex, inseparable, and highly complex optimization problems. The proposed algorithm is also used as a Multi-Layer Perceptron (MLP) neural network trainer to solve the software development effort estimation (SDEE) problem on three real-world datasets. The simulation results proved the superior and promising performance of the HSCWMA algorithm in the majority of evaluations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3