Grain Temperature Prediction Based on GRU Deep Fusion Model

Author:

Mao Bo1ORCID,Tao Shancheng2,Li Bingchan3

Affiliation:

1. College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, P. R. China

2. College of Information Engineering, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, P. R. China

3. College of Marine Engineering, Electrization and Intelligence, Jiangsu Maritime Institute, Nanjing, Jiangsu 211170, P. R. China

Abstract

Temperature is an essential quality index in storage. Prediction of temperature can help the grain storage industry to apply the appropriate operations such as ventilation or drying to improve the quality of grain and extend the suitable storage time. Traditional machine learning methods usually cannot accurately predict the temperature data of the grain considering the complexity of environmental factors and grain warehouse conditions. To make better use of the temporal data such as temperature/humidity information of grain itself and its environment, this paper proposes a gated recurrent unit (GRU)-based algorithm to predict the change of the data. The grain warehouse environmental data are collected by multi-functional sensors inside a grain depot, including temperature, humidity, wind speed, air pressure, etc. Some of these data features such as rain or snow days are sparse data features. Excessive sparse features can affect the training accuracy of the model. At the same time, due to sensor aging or extreme weather conditions, the data collected may not be accurate, and the data contain noise, which also has a significant impact on the training of the model. To improve the performance of the proposed GRU framework, multivariate linear regression is used for feature generation to optimize the volatility of weather data, strengthen and construct the characteristics of datasets, and wavelet filtering is used to denoise the corresponding features. This paper focuses on the data sparse and noise problem and applies the MLR and wavelet filtering to improve the GRU prediction framework for grain warehouse temporal data. According to our experiment, the temperature prediction results based on the GRU deep fusion model have better improvement in prediction accuracy and time than the existing neural network algorithms such as long–short-term memory (LSTM), GRU, and transformer.

Funder

National Key R&D Program of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Open Project of Collaborative Innovation Center for Modern Grain Circulation and Safety

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3