Novel Triplex Procedure for Ranking the Ability of Software Engineering Students Based on Two levels of AHP and Group TOPSIS Techniques

Author:

Zughoul O.1,Zaidan A. A.1,Zaidan B. B.1,Albahri O. S.1,Alazab M.2,Amomeni U.3,Albahri A. S.4,Salih Mahmood M.5,Mohammed R. T.6,Mohammed K. I.1,Momani F.1,Amomeni B.1

Affiliation:

1. Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia

2. College of Engineering, IT and Environment, Charles Darwin University, Casuarina, NT, Australia

3. School of Business, Department of Marketing, Jadara University, Irbid, Jordan

4. Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq

5. Department of Computer Science, Computer Science and Mathematics College, Tikrit University, Tikrit 34001, Iraq

6. Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia

Abstract

Ranking the strengths and weaknesses of software engineering students in software development life cycle (SDLC) process level is a challenging task owing to (1) data variation, (2) multievaluation criteria, (3) criterion importance and (4) alternative member importance. According to the existing literature, no specified procedure can rank the ability of software engineering students based on SDLC process levels to figure out the strengths and weaknesses of each student. This study aims to present a novel triplex procedure for ranking the ability of software engineering students to address the literature gap. The methodology of the proposed work is presented on the basis of three phases. In the identification phase, four steps are implemented, namely, processing dataset, identifying the criteria, distributing the courses to the software engineering body of knowledge and proposing the pre-decision matrix (DM). The data comprise the GPA and soft skills from 60 software engineering students who graduated from Universiti Pendidikan Sultan Idris in 2016. In the pre-processing phase, three steps are involved as follows. Analytic hierarchy process (AHP) is first used to assign weights to the courses and then multiply the assigned weight by courses, which is the first procedure in the proposed work. In this phase, the construction of DM is presented based on multimeasurement criteria (GPA and soft skills), with SDLC process levels as alternatives. In the development phase, AHP is used again to weight the multimeasurement criteria, and this is the second procedure. In such case, the coordinator and head of the software engineering department are consulted to obtain subjective judgments for each criterion. Technique for order performance by similarity to ideal solution (TOPSIS) is then used to rank the students, which is the third procedure. In the validation, statistical analysis is performed to validate the results by checking the accuracy of the systematic ranking. Results show that (1) integrating AHP and group TOPSIS is suitable for ranking the ability of students. (2) The 60 students are categorized into five ranking groups based on their strength level: 14 collector requirements, 13 designers, 5 programmers, 13 testers and 15 maintenances. (3) Significant differences are observed between the groups’ scores for each level of SDLC, indicating that the ranking results are identical for all levels.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3