Towards Automation of Short-Term Financial Distress Detection: A Real-World Case Study

Author:

Sutiene Kristina1ORCID,Luksys Kestutis2,Kundeliene Kristina3

Affiliation:

1. Dept. of Mathematical Modeling, Kaunas University of Technology, Studentu st. 50-144, 51368 Kaunas, Lithuania

2. Dept. of Applied Mathematics, Kaunas University of Technology, Studentu st. 50-327a, 51368 Kaunas, Lithuania

3. School of Economics and Business, Kaunas University of Technology, Gedimino st. 50-505, 44239 Kaunas, Lithuania

Abstract

The bankruptcy prediction research domain continues to evolve with the main aim of developing a model suitable for real-world application in order to detect early stages of financial distress of a company. The recent developments in computing, combined with the potential applications of big data technologies and artificial intelligence solutions have already made possible the integration of timely and recent information about business activities in order to monitor the financial health of companies. Therefore, this paper focuses on the predictions made a few months prior to the potential default of a company with the aim of identifying the determinants that signal about the insolvency. The experiments include in-depth analysis of model performances using different dataset configurations.

Funder

European Commission

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3