Provenance Framework for Multi-Depth Querying Using Zero-Information Loss Database

Author:

Rani Asma1,Goyal Navneet2,Gadia Shashi K.3

Affiliation:

1. Department of Computer Science & Engineering, Dr. B. R. Ambedkar Institute of Technology, Port Blair, A & N Islands, India

2. Department of Computer Science & Information Systems, ADAPT Lab, BITS Pilani, Pilani, Rajasthan, India

3. Department of Computer Science, Iowa State University, Ames, Iowa, USA

Abstract

Data provenance is a kind of metadata that describes the origin and derivation history of data. It provides the information about various direct and indirect sources of data and different transformations applied on it. Provenance information are beneficial in determining the quality, truthfulness, and authenticity of data. It also explains how, when, why, and by whom this data are created. In a relational database, fine-grained provenance captured at different stages (i.e., multi-layer provenance) is more significant and explanatory as it provides various remarkable information such as immediate and intermediate sources and origin of data. In this paper, we propose a novel multi-layer data provenance framework for Zero-Information Loss Relational Database (ZILRDB). The proposed framework is implemented on top of the relational database using the object relational database concepts to maintain all insert, delete, and update operations efficiently. It has the capability to capture multi-layer provenance for different query sets including historical queries. We also propose Provenance Relational Algebra (PRA) as an extension of traditional relational algebra to capture the provenance for ASPJU (Aggregate, Select, Project, Join, Union) queries in relational database. The framework provides a detailed provenance analysis through multi-depth provenance querying. We store the provenance data in both relational and graph database, and further evaluate the performance of the framework in terms of provenance storage overhead and average execution time for provenance querying. We observe that the graph database offers significant performance gains over relational database for executing multi-depth queries on provenance. We present two use case studies to explain the usefulness of proposed framework in various data-driven systems to increase the understandability of system’s behavior and functionalities.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3