Does Interval Knowledge Sharpen Forecasting Models? Evidence from China’s Typical Ports

Author:

Huang Anqiang1,Lai Kin Keung2,Qiao Han3,Wang Shouyang34,Zhang Zhenji1

Affiliation:

1. School of Economics and Management, Beijing Jiaotong University, Beijing 100044, P. R. China

2. Department of Management Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China

3. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, P. R. China

4. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China

Abstract

Substantial studies integrating experts’ point knowledge with statistical forecasting modes have been implemented to investigate a long-lasting and disputing issue which is whether or not expert knowledge could improve forecasting performance. However, a large body of current forecasting studies neglect the application of experts’ interval knowledge where experts are expected to be more competent, considering that humans do much better in fuzzy calculation like interval estimation than in accurate computation like point estimation. To fill in this gap, this paper first proposes a novel forecasting paradigm incorporating interval knowledge generated by a Delphi-based expert system into the SARIMA and SVR models. For validation purposes, the proposed paradigm is applied to several representative seaports from the top three dynamic economic regions in China. The empirical results clearly show that interval knowledge, following the proposed paradigm, significantly improves the forecasting performance. This finding implies that the proposed forecasting paradigm has the good potential to be an effective method for sharpening the statistical models for container throughput forecasting.

Funder

National Natural Science Foundation of China

EC-China Research Network on Integrated Container Supply Chains

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3