A Novel Hybrid Approach for Intent Creation and Detection Using K-Means-Based Topic Clustering and Heuristic-Based Capsule Network

Author:

Magoo Chandni12,Singh Manjeet1

Affiliation:

1. Computer Science and Engineering, J. C. Bose University of Science and Technology, Faridabad, Haryana 121006 India

2. Department of Computer Applications, Manav Rachna University, Faridabad, Haryana, 121006 India

Abstract

Background: The social media revolution has offered new facilities and opportunities to the online community to communicate their intentions, opinions, and views regarding products, services, policies, and events. The identification of intent focuses on the detection of intents from user reviews, that is, whether the specific review of the user includes intention or not. Intent mining is also named intent identification which helps business organizations to identify the purchase intentions of users. However, detecting user intentions encoded in text queries is a complicated task in several Natural Language Processing (NLP) applications such as robots, smart agents, personal assistants, and search engines. The existing research works have discovered the utilization of several machine learning techniques to detect the intents from queries of users. Most works consider intent detection as a classification problem, with utterances as predefined intents. Research question: Whether the researcher resolves the detection of user intentions encoded in text queries? How the researcher solves the existing challenges based on intent mining? Purpose: The main contribution of the research is to design and implement intent detection using topic clustering and deep learning. Methodology: Initially, the dataset related to diverse queries is gathered. Then, the label creation is performed by clustering. The clustering is performed by a k-means clustering model with a cosine similarity function. Once the clustering is performed for different queries, the label is created, which is used to train the network under the detection process. For the detection, this paper uses a Heuristic-based Capsule Network (H-CapNet) that could perform the intention for a new query. The hybrid meta-heuristic algorithm with Escaping Energy searched Grey–Harris Hawks Algorithm (EEG-HHA) is used for improving the capsule network. Validation: Experimental analysis shows that the developed method has superior performance in evaluating standard datasets with other approaches. Results: From the simulation results, the accuracy of the developed EEG-HHA-CapNet for dataset 1 is secured at 3%, 1.6%, 2%, and 1.1% increased than PSO-CapNet, WOA-CapNet, HHO-CapNet, and GWO-CapNet. Conclusion: Thus, the designed user intent detection models reveal their more advanced performance based on the diverse performance and error metrics for datasets 1 and 2.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Medicine,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the Organization Method of Operational Command Decision-making Case Base for Case-based Reasoning;Proceedings of the 2023 3rd Guangdong-Hong Kong-Macao Greater Bay Area Artificial Intelligence and Big Data Forum;2023-09-22

2. Design and Development of New Interactive Chatbot System for Mobile Service Providers through Heuristic-Based Ensemble Learning;Cybernetics and Systems;2022-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3