A Hybrid Validity Index to Determine K Parameter Value of k-Means Algorithm for Time Series Clustering

Author:

Ozkok Fatma Ozge1ORCID,Celik Mete1

Affiliation:

1. Department of Computer Engineering, Erciyes University, Kayseri, 38039, Turkey

Abstract

Time series is a set of sequential data point in time order. The sizes and dimensions of the time series datasets are increasing day by day. Clustering is an unsupervised data mining technique that groups objects based on their similarities. It is used to analyze various datasets, such as finance, climate, and bioinformatics datasets. [Formula: see text]-means is one of the most used clustering algorithms. However, it is challenging to determine the value of [Formula: see text] parameter, which is the number of clusters. One of the most used methods to determine the number of clusters (such as [Formula: see text]) is cluster validity indexes. Several internal and external validity indexes are used to find suitable cluster numbers based on characteristics of datasets. In this study, we propose a hybrid validity index to determine the value of [Formula: see text] parameter of [Formula: see text]-means algorithm. The proposed hybrid validity index comprises four internal validity indexes, such as Dunn, Silhouette, C index, and Davies–Bouldin indexes. The proposed method was applied to nine real-life finance and benchmarks time series datasets. The financial dataset was obtained from Yahoo Finance, consisting of daily closing data of stocks. The other eight benchmark datasets were obtained from UCR time series classification archive. Experimental results showed that the proposed hybrid validity index is promising for finding the suitable number of clusters with respect to the other indexes for clustering time-series datasets.

Funder

Scientific and Technological Research Council of Turkey

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3