Landslide Identification Using Optimized Deep Learning Framework Through Data Routing in IoT Application

Author:

L. Lijesh1,Arockia Selva Saroja G.1

Affiliation:

1. Department of Electronics and Communication Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, Thuckalay, Kanyakumari District Tamil Nadu, India

Abstract

This paper develops an approach for detecting landslide using IoT. The simulation of IoT is the preliminary step that helps to collect data. The suggested Water Particle Grey Wolf Optimization (WPGWO) is used for the routing. The Water Cycle Algorithm (WCA), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO) are combined in the suggested method (WPGWO). The fitness is newly modeled considering energy, link cost, distance, and delay. The maintenance of routes is done to assess the dependability of the network topology. The landslide detection process is carried out at the IoT base station. In feature selection, angular distance is used. Oversampling is used to enrich the data, and Deep Residual Network (DRN) — used for landslide identification — is trained using the proposed Water Cycle Particle Swarm Optimization (WCPSO) method, which combines WCA and PSO. The proposed WCPSO-based DRN offered effective performance with the highest energy of 0.049[Formula: see text]J, throughput of 0.0495, accuracy of 95.7%, sensitivity of 97.2% and specificity of 93.9%. This approach demonstrated improved robustness and produced the global best optimal solution. For the proposed WPGWO, WCA, GWO, and PSO are linked to improve performance in determining the optimum routes. When comparing with existing methods the proposed WCPSO-based DRN offered effective performance.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3