A hybrid Euclidean–Lorentzian universe

Author:

Yahalom A.1ORCID

Affiliation:

1. Ariel University, Ariel 40700, Israel

Abstract

The limited velocity in a geometry of Lorentzian signature seem to prevent the universe to reach thermodynamic equilibrium as suggested by the cosmic microwave background. Thus it was suggested that the universe which was initially minuscule has reached a more considerable radius in a short duration by a process known as cosmic inflation. However, to drive such a process have led to the suggestion of an ad-hoc scalar field the inflaton, which has no purpose in nature other than driving the cosmic inflation field and then stopping it once the universe reached the right size. In a recent paper it was shown that rapid expansion can occur without postulating an inflation by following Hawking’s suggestion and assuming that primordially the metric of the universe had an Euclidean signature, in which case velocity is not limited and thermalization and rapid expansion are derived without the need to assume an ad-hoc field. However, while in the previous work emphasis was put on the dynamics and physical statistics of the particles in a Euclidean space versus Lorentzian space in which both spaces were given. No mathematical model was given regarding the development of current Lorentzian space-time from the early Euclidean space-time, and how fundamental problems such as the space-time singularity and the homogeneity of the CMB can be solved in the hybrid Euclidean–Lorentzian picture. This lacuna is to be rectified in this paper.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3