Affiliation:
1. Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, Georgia 30314, USA
Abstract
After a cursory introduction of the basic ideas behind Born’s Reciprocal Relativity theory, the geometry of the cotangent bundle of spacetime is studied via the introduction of nonlinear connections associated with certain nonholonomic modifications of Riemann–Cartan gravity within the context of Finsler geometry. A novel gauge theory of gravity in the [Formula: see text] cotangent bundle [Formula: see text] of spacetime is explicitly constructed and based on the gauge group [Formula: see text] which acts on the tangent space to the cotangent bundle [Formula: see text] at each point [Formula: see text]. Several gravitational actions involving curvature and torsion tensors and associated with the geometry of curved phase-spaces are presented. We conclude with a brief discussion of the field equations, the geometrization of matter, quantum field theory (QFT) in accelerated frames, T-duality, double field theory, and generalized geometry.
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献