Perturbations of quasi-Newtonian universes in scalar–tensor gravity

Author:

Sami Heba1ORCID,Abebe Amare1

Affiliation:

1. Center for Space Research, North-West University, Mahikeng 2745, South Africa

Abstract

In this contribution, we consider the well-known equivalence between [Formula: see text] gravity and Brans–Dicke-type scalar–tensor theories to study the evolution of scalar cosmological perturbations for a class of shear-free cosmological dust models with irrotational fluid flows. We use the [Formula: see text] covariant formalism to present the covariant linearized evolution and constraint equations. We then derive the integrability conditions describing a consistent evolution of the linearized field equations of quasi-Newtonian universes in the modified (scalar–tensor) theory of gravity. Finally, we derive the evolution equations for the density and velocity perturbations of the quasi-Newtonian universe. We apply the harmonic decomposition and explore the behavior of the matter density contrast by considering [Formula: see text] toy models. The growth of the matter density contrast for both short- and long-wavelength modes has been examined by applying certain assumptions of the initial conditions. We then apply the so-called quasi-static approximation to obtain exact solutions on small scales, but the results show that this approximation is not applicable here. Moreover, any small deviation from general relativity and any small change in the initial conditions of the perturbations causes huge orders-of-magnitude deviations from limiting general relativistic results, potentially putting constraints on the modified theory in the quasi-Newtonian cosmologies treatment. Our current work differs from other works in the literature, in that it is the first such work to show quasi-Newtonian cosmologies are unstable to linearized perturbations in modified gravity.

Funder

National Research Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3