Isospectral drums and simple groups

Author:

Thas Koen1ORCID

Affiliation:

1. Department of Mathematics, Ghent University, Krijgslaan 281, S25, B-9000 Ghent, Belgium

Abstract

Nearly every known pair of isospectral but nonisometric manifolds — with as most famous members isospectral bounded [Formula: see text]-planar domains which makes one “not hear the shape of a drum” [M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly 73(4 part 2) (1966) 1–23] — arise from the (group theoretical) Gassmann–Sunada method. Moreover, all the known [Formula: see text]-planar examples (so counter examples to Kac’s question) are constructed through a famous specialization of this method, called transplantation. We first describe a number of very general classes of length equivalent manifolds, with as particular cases isospectral manifolds, in each of the constructions starting from a given example that arises itself from the Gassmann–Sunada method. The constructions include the examples arising from the transplantation technique (and thus in particular the known planar examples). To that end, we introduce four properties — called FF, MAX, PAIR and INV — inspired by natural physical properties (which rule out trivial constructions), that are satisfied for each of the known planar examples. Vice versa, we show that length equivalent manifolds with FF, MAX, PAIR and INV which arise from the Gassmann–Sunada method, must fall under one of our prior constructions, thus describing a precise classification of these objects. Due to the nature of our constructions and properties, a deep connection with finite simple groups occurs which seems, perhaps, rather surprising in the context of this paper. On the other hand, our properties define in some sense physically irreducible pairs of length equivalent manifolds — “atoms” of general pairs of length equivalent manifolds, in that such a general pair of manifolds is patched up out of irreducible pairs — and that is precisely what simple groups are for general groups.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3