Affiliation:
1. Department of Mathematics, Sri Guru Teg Bahadur Khalsa College, Sri Anandpur Sahib-140118, Punjab, India
Abstract
It is shown that for a proper Generalized Cauchy–Riemann ([Formula: see text])-lightlike submanifold of an indefinite nearly Kaehler manifold such that [Formula: see text] defines a totally geodesic foliation in [Formula: see text], there does not exist any warped product [Formula: see text]-lightlike submanifold of the type [Formula: see text]. Then, the existence of [Formula: see text]-lightlike warped product submanifolds of the type [Formula: see text] in indefinite nearly Kaehler manifolds is obtained by establishing a characterization in terms of the shape operator. Further, we prove that for a proper [Formula: see text]-lightlike warped product submanifold of an indefinite nearly Kaehler manifold, the induced connection [Formula: see text] can never be a metric connection. Finally, we derive some characterizations in terms of the canonical structures [Formula: see text] and [Formula: see text] on a [Formula: see text]-lightlike submanifold of an indefinite nearly Kaehler manifold enabling it to be a [Formula: see text]-lightlike warped product.
Funder
SERB-DST, Govt. of India, New Delhi
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献