Foundations of higher-order variational theory on Grassmann fibrations

Author:

Urban Zbyněk12,Krupka Demeter234

Affiliation:

1. Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic

2. Lepage Research Institute, 783 42 Slatinice, Czech Republic

3. Department of Mathematics, LaTrobe University, Melbourne, Bundoora, Victoria 3086, Australia

4. School of Mathematics, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian Zone, Beijing 100081, P. R. China

Abstract

A setting for higher-order global variational analysis on Grassmann fibrations is presented. The integral variational principles for one-dimensional immersed submanifolds are introduced by means of differential 1-forms with specific properties, similar to the Lepage forms from the variational calculus on fibred manifolds. Prolongations of immersions and vector fields to the Grassmann fibrations are defined as a geometric tool for the variations of immersions, and the first variation formula in the infinitesimal form is derived. Its consequences, the Euler–Lagrange equations for submanifolds and the Noether theorem on invariant variational functionals are proved. Examples clarifying the meaning of the Noether theorem in the context of variational principles for submanifolds are given.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Higher-order homogeneous functions: Classification;Publicationes Mathematicae Debrecen;2021-10-01

2. On the Carathéodory Form in Higher-Order Variational Field Theory;Symmetry;2021-05-04

3. Variational principles: Projectability onto Grassmann fibrations;Journal of Mathematical Physics;2020-12-01

4. Lepage forms in Finsler geometry: Second-order generalization;International Journal of Geometric Methods in Modern Physics;2019-11

5. On a global Lagrangian construction for ordinary variational equations on 2-manifolds;Journal of Mathematical Physics;2019-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3