On the existence of parallel one forms

Author:

Kozma László1ORCID,Elgendi Salah G.23

Affiliation:

1. Department of Geometry, Institute of Mathematics, University of Debrecen, H-4002 Debrecen, P. O. Box 400, Hungary

2. Departmernt of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia

3. Department of Mathematics, Faculty of Science, Benha University, Egypt

Abstract

In this paper, using the Finslerian settings, we study the existence of parallel one forms (or, equivalently parallel vector fields) on a Riemannian manifold. We show that a parallel one form on a Riemannian manifold [Formula: see text] is a holonomy invariant function on the tangent bundle [Formula: see text] with respect to the geodesic spray. We prove that if the metrizability freedom of the geodesic spray of [Formula: see text] is [Formula: see text], then the [Formula: see text] does not admit a parallel one form. We investigate a sufficient condition on a Riemannian manifold to admit a parallel one form. As by-product, we relate the existence of a proper affine Killing vector field by the metrizability freedom. We establish sufficient conditions for the existence of a parallel one form on a Finsler manifold. By counter-examples, we show that if the metrizability freedom is greater than 1, then the manifold (Riemannian or Finslerian) does not necessarily admit a parallel one form. Various special cases and examples are studied and discussed.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3