Darboux and generalized Darboux transformations for the fractional integrable derivative nonlinear Schrödinger equation

Author:

Zhang Sheng1ORCID,Zhang Yuying1ORCID,Xu Bo2ORCID,Li Xinyu1ORCID

Affiliation:

1. School of Mathematical Sciences, Bohai University, Jinzhou 121013, P. R. China

2. School of Educational Sciences, Bohai University, Jinzhou 121013, P. R. China

Abstract

Analytical methods provide crucial mathematical insights into the stable solitary waves hidden in nonlinear phenomena. The nonlinear Schrödinger (NLS) equation is one of the most important typical integrable soliton models. From a mathematical perspective, the essence of the celebrated derivative NLS (DNLS) equation’s difference from the classical NLS equation lies in its cubic potential being differentiated once by the spatial variable and multiplied by the imaginary unit, which leads to the former having some characteristics that the latter cannot have. This paper extends the DNLS equation to the fractional integrable case with conformable derivative operators, and uses Darboux transformations (DTs) and generalized DT (GDT) to solve it exactly. Specifically, Lax pairs generating the fractional DNLS equation are first given. Based on the given Lax pairs, then the n-fold DTs and GDT for the fractional DNLS equation are derived. Some special exact solutions of the fractional DNLS equation are further obtained by employing the derived n-fold DTs and GDT. Finally, several novel space–time structures and dynamical evolutions of the obtained exact solutions are analyzed. This paper reveals through the DT and GDT methods that the double power-law fractional orders in the exact solutions of the fractional DNLS equation can be used to dominate the variable velocity propagation and anomalous diffusion in fractional dimensional media at different geometric scales.

Funder

Natural Science Foundation of Shaanxi Provincial Department of Education

Liaoning BaiQianWan Talents Program of China

National Science Foundation of China

Natural Science Foundation of Xinjiang Autonomous Region of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3