Generalized Ricci recurrent spacetimes and GRW spacetimes

Author:

Chaubey Sudhakar K.1ORCID,Suh Young Jin2

Affiliation:

1. Department of Information Technology, Section of Mathematics, University of Technology and Applied Sciences-Shinas, P. O. Box 77, Postal Code 324, Oman

2. Department of Mathematics and RIRCM, Kyungpook National University, Daegu 41566, South Korea

Abstract

The main goal of this paper is to study the properties of generalized Ricci recurrent perfect fluid spacetimes and the generalized Ricci recurrent (generalized Robertson–Walker (GRW)) spacetimes. It is proven that if the generalized Ricci recurrent perfect fluid spacetimes satisfy the Einstein’s field equations without cosmological constant, then the isotropic pressure and the energy density of the perfect fluid spacetime are invariant along the velocity vector field of the perfect fluid spacetime. In this series, we show that a generalized Ricci recurrent perfect fluid spacetime satisfying the Einstein’s field equations without cosmological constant is either Ricci recurrent or Ricci symmetric. An [Formula: see text]-dimensional compact generalized Ricci recurrent GRW spacetime with almost Ricci soliton is geodesically complete, provided the soliton vector field of almost Ricci soliton is timelike. Also, we prove that a (GR)n GRW spacetime is Einstein. The properties of (GR)n GRW spacetimes equipped with almost Ricci soliton are studied.

Funder

National Research Foundation of Korea

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3