Quantization of length in spaces with position-dependent noncommutativity

Author:

Aryampilly Jishnu1ORCID,Balasundaram Muthukumar1ORCID,Rashid Aamir1ORCID

Affiliation:

1. School of Physical, Chemical and Applied Sciences, Pondicherry University, Kalapet, Puducherry 605014, India

Abstract

In this paper, we present a novel approach to quantizing the length in noncommutative spaces with positional-dependent noncommutativity. The method involves constructing ladder operators that change the length not only along a plane but also along the third direction due to a noncommutative parameter that is a combination of canonical/Weyl–Moyal-type and Lie algebraic-type. The primary quantization of length in canonical-type noncommutative space takes place only on a plane, while in the present case, it happens in all three directions. We establish an operator algebra that allows for the raising or lowering of eigenvalues of the operator corresponding to the square of the length. We also attempt to determine how the obtained ladder operators act on different states and work out the eigenvalues of the square of the length operator in terms of eigenvalues corresponding to the ladder operators. We conclude by discussing the results obtained.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3