CURVATURE STRUCTURE OF SELF-DUAL 4-MANIFOLDS

Author:

BLAŽIĆ NOVICA,GILKEY PETER1,NIKČEVIĆ STANA2,STAVROV IVA3

Affiliation:

1. Mathematics Department, University of Oregon, Eugene OR 97403, USA

2. Mathematical Institute, Sanu, Knez Mihailova 35, p.p. 367, 11001 Belgrade, Serbia

3. Department of Mathematical Sciences, Lewis and Clark College, 0615 SW Palatine Hill Road, MSC 110, Portland, Oregon, 97219, USA

Abstract

We show the existence of a modified Cliff(1,1)-structure compatible with an Osserman 0-model of signature (2,2). We then apply this algebraic result to certain classes of pseudo-Riemannian manifolds of signature (2,2). We obtain a new characterization of the Weyl curvature tensor of an (anti-)self-dual manifold and we prove some new results regarding (Jordan) Osserman manifolds.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Curvature models of conformally flat Walker (2,2)-manifolds;International Journal of Geometric Methods in Modern Physics;2019-05

2. UNIVERSAL CURVATURE IDENTITIES III;INT J GEOM METHODS M;2013

3. Applications of Affine and Weyl Geometry;Synthesis Lectures on Mathematics and Statistics;2013-05-21

4. Conformally Osserman manifolds of dimension 16 and a Weyl–Schouten theorem for rank-one symmetric spaces;Annali di Matematica Pura ed Applicata;2011-04-13

5. GEOMETRIC REALIZATIONS OF KAEHLER AND OF PARA-KAEHLER CURVATURE MODELS;International Journal of Geometric Methods in Modern Physics;2010-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3