First-order quantum correction of thermodynamics in a charged accelerating AdS black hole with gauge potential

Author:

Ali Riasat1ORCID,Babar Rimsha1ORCID,Aounallah Houcine2ORCID,Övgün Ali3ORCID

Affiliation:

1. Department of Mathematics, GC University Faisalabad Layyah Campus, Layyah 31200, Pakistan

2. Department of Science and Technology, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria

3. Physics Department, Eastern Mediterranean University, Famagusta, 99628 North Cyprus via Mersin 10, Turkey

Abstract

In this paper, we study the tunneling radiation from a charged-accelerating AdS black hole with gauge potential under the impact of quantum gravity. Using the semi-classical phenomenon known as the Hamilton–Jacobi ansatz, it is studied that tunneling radiation occurs via the horizon of a black hole and also employs the Lagrangian equation using the generalized uncertainty principle. Furthermore, we investigate the impact of charge, gauge potential, and first order correction parameters on the temperature as well as the stable and unstable states of the black hole. We also compute thermodynamic properties such as entropy, internal energy, Helmholtz free energy, enthalpy, specific heat, and Gibbs free energy under the impact of the correction parameter for the black hole. We calculate the logarithmic modification terms for entropy around the equilibrium state to analyze the impacts of logarithmic correction. In the presence of the correction terms, we also check the validity of the thermodynamics. It examines the graphical representation of the influence of logarithmic correction on the thermodynamic properties of black hole stability as well as charged, accelerating, and gauge potential parameters.

Funder

Fundamental challenges in theoretical physics

COSMIC WISPers in the Dark Universe: Theory, astrophysics and experiments

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3