Galactic rotation curves of spiral galaxies and dark matter in f(ℛ,T) gravity theory

Author:

Mohan Gayatri1ORCID,Goswami Umananda Dev1ORCID

Affiliation:

1. Department of Physics, Dibrugarh University, Dibrugarh 786004, Assam, India

Abstract

Galactic rotation curve is a powerful indicator of the state of the gravitational field within a galaxy. The flatness of these curves indicates the presence of dark matter (DM) in galaxies and their clusters. In this paper, we focus on the possibility of explaining the rotation curves of spiral galaxies without postulating the existence of DM in the framework of [Formula: see text] gravity, where the gravitational Lagrangian is written by an arbitrary function of [Formula: see text], the Ricci scalar and of [Formula: see text], the trace of energy–momentum tensor [Formula: see text]. We derive the gravitational field equations in this gravity theory for the static spherically symmetric spacetime and solve the equations for metric coefficients using a specific model that has minimal coupling between matter and geometry. The orbital motion of a massive test particle moving in a stable circular orbit is considered and the behavior of its tangential velocity with the help of the considered model is studied. We compare the theoretical result predicted by the model with observations of a sample of 19 galaxies by generating and fitting rotation curves for the test particle to check the viability of the model. It is observed that the model could almost successfully explain the galactic dynamics of these galaxies without the need of DM at large distances from the galactic center.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Galactic dynamics in the presence of scalaron: a perspective from f(R) gravity;Physica Scripta;2024-08-28

2. Dark matter from evaporating primordial black holes in the early universe;International Journal of Geometric Methods in Modern Physics;2024-07-10

3. Are f(R, Matter) theories really relevant to cosmology?;Journal of Cosmology and Astroparticle Physics;2024-05-01

4. Exact rotating black hole solutions for f(R) gravity by modified Newman Janis algorithm;The European Physical Journal C;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3