Circular orbits in the Taub–NUT and massless Taub–NUT spacetime

Author:

Pradhan Parthapratim1

Affiliation:

1. Department of Physics, Hiralal Mazumdar Memorial College for Women, Dakshineswar, Kolkata-700035, West Bengal, India

Abstract

In this work, we study the equatorial causal geodesics of the Taub–NUT (TN) spacetime in comparison with massless TN spacetime. We emphasized both on the null circular geodesics and time-like circular geodesics. From the effective potential diagram of null and time-like geodesics, we differentiate the geodesics structure between TN spacetime and massless TN spacetime. It has been shown that there is a key role of the NUT parameter to changes the shape of pattern of the potential well in the NUT spacetime in comparison with massless NUT spacetime. We compared the innermost stable circular orbit (ISCO), marginally bound circular orbit (MBCO) and circular photon orbit (CPO) of the said spacetime with graphically in comparison with massless cases. Moreover, we compute the radius of ISCO, MBCO and CPO for extreme TN black hole (BH). Interestingly, we show that these three radii coincides with the Killing horizon, i.e. the null geodesic generators of the horizon. Finally in Appendix A, we compute the center-of-mass (CM) energy for TN BH and massless TN BH. We show that in both cases, the CM energy is finite. For extreme NUT BH, we found that the diverging nature of CM energy. First, we have observed that a non-asymptotic flat, spherically symmetric and stationary extreme BH showing such feature.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3