New traversable wormhole solutions in Einstein Gauss–Bonnet gravity

Author:

Zubair M.1ORCID,Farooq Mushayydha1,Gudekli Ertan2,Kausar Hafiza Rizwana3,Yildiz G. D. Acan45

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad, Lahore Campus, 54000 Lahore, Pakistan

2. Department of Physics, Istanbul University, 34452 Istanbul Turkey

3. Faculty of Sciences, University of Central Punjab, 54000 Lahore, Pakistan

4. Department of Physics, Faculty of Science and Letters, Pîrî Reis University, 34940 Tuzla, Istanbul, Turkey

5. Graduate School of Engineering and Science, Istanbul University, Istanbul 34134, Turkey

Abstract

This paper explores the existence of static wormholes in 4-Dimensional Einstein Gauss–Bonnet (4D EGB) gravity. We discuss some possibilities for constructing radial-dependent shape functions via different strategies to develop some non-conventional wormhole geometries by considering anisotropic matter sources. In this regard, we assume a specific form of the equation of state and investigate its effects on Gauss–Bonnet (GB) coupling parameter. Next, we impose a traceless condition on the anisotropic fluid distribution as well as radial-dependent energy density profile to explore wormhole geometries as separate cases. It is seen that the obtained results can be reduced into Morris–Throne wormholes for the zero value of GB-coupled parameter for anisotropic fluid distribution. Furthermore, we scrutinize flaring-out conditions and examine asymptotically flatness constraints for the existence of wormholes. Our analysis shows that the weak energy condition (WEC) is satisfied for a particular range by constraining GB-coupled parameter. We study the dynamics of GB-coupled parameter for both cases [Formula: see text] and [Formula: see text]. It is concluded that wormhole solutions are possible for [Formula: see text] and, in some cases, [Formula: see text]. The active gravitational mass of developed wormholes is calculated and plotted graphically. The wormhole geometry is discussed by plotting 2D and 3D embedding diagrams. In order to analyze the complexity of the system, we have plotted the complexity factor for each wormhole.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3