FINSLER AND LAGRANGE GEOMETRIES IN EINSTEIN AND STRING GRAVITY

Author:

VACARU SERGIU I.1

Affiliation:

1. The Fields Institute for Research in Mathematical Science, 222 College Street, 2d Floor, Toronto M5T 3J1, Canada

Abstract

We review the current status of Finsler–Lagrange geometry and generalizations. The goal is to aid non-experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Finsler and Kähler geometry and geometric mechanics how they could perform their results in order to be accepted by the community of "orthodox" physicists. Although the bulk of former models of Finsler–Lagrange spaces where elaborated on tangent bundles, the surprising result advocated in our works is that such locally anisotropic structures can be modeled equivalently on Riemann–Cartan spaces, even as exact solutions in Einstein and/or string gravity, if nonholonomic distributions and moving frames of references are introduced into consideration. We also propose a canonical scheme when geometrical objects on a (pseudo) Riemannian space are nonholonomically deformed into generalized Lagrange, or Finsler, configurations on the same manifold. Such canonical transforms are defined by the coefficients of a prime metric and generate target spaces as Lagrange structures, their models of almost Hermitian/Kähler, or nonholonomic Riemann spaces. Finally, we consider some classes of exact solutions in string and Einstein gravity modeling Lagrange–Finsler structures with solitonic pp-waves and speculate on their physical meaning.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Black hole solutions with constant Ricci scalar in a model of Finsler gravity;Journal of Cosmology and Astroparticle Physics;2024-04-01

2. Multimetric Finsler geometry;International Journal of Modern Physics A;2023-01-30

3. Modelling Cosmic Springs with Finsler and Generalised Finsler Geometries;Symmetry;2022-10-16

4. SOME GEOMETRICAL RESULTS ON NEARLY KÄHLER FINSLER MANIFOLDS;Facta Universitatis, Series: Mathematics and Informatics;2022-08-06

5. Nonstandard and fractal electrodynamics in Finsler–Randers space;International Journal of Geometric Methods in Modern Physics;2022-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3