Gravitational lensing for wormhole with scalar field in f(R) gravity

Author:

Godani Nisha1ORCID,Samanta Gauranga C.2

Affiliation:

1. Department of Mathematics, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India

2. P. G. Department of Mathematics, Fakir Mohan University, Balasore, Odisha, India

Abstract

Horizonless compact objects with light rings are becoming more popular in recent years for numerous motives. In this paper, the conditions under which the throat of a Morris–Thorne wormhole can act as an effective photon sphere are worked out. A specific example which satisfies all the energy conditions in modified theory of gravity is considered and the formation of relativistic images is studied. We have detected photon spheres for the wormhole modeling due to the effect of strong gravitational lensing. Subsequently, we have found the expression for deflection angle in terms of the angular separation between the image and lens by determining the strong-field limit coefficients. It is found to diverge for the impact parameter corresponding to the photon sphere. We observed that the angle of Einstein ring [Formula: see text] and relativistic Einstein ring [Formula: see text] are completely distinguishable. Given the configuration of the gravitational lensing and the radii of the Einstein ring and relativistic Einstein rings, we can distinguish between a black hole and a wormhole in principle. The stability of wormholes is examined from the positivity of the shape function and satisfaction of the flare-out condition.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Galactic microlensing by backreacted massless wormholes;General Relativity and Gravitation;2024-05

2. Non-commutative wormhole in non-minimal curvature–matter coupling of f(R) gravity with Gaussian and Lorentzian distributions;International Journal of Geometric Methods in Modern Physics;2023-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3