Affiliation:
1. School of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China
Abstract
Let [Formula: see text] be a three-dimensional real hypersurface in a nonflat complex space form of complex dimension two. In this paper, we prove that [Formula: see text] is [Formula: see text]-parallel with two distinct principal curvatures at each point if and only if it is locally congruent to a geodesic sphere in [Formula: see text] or a horosphere, a geodesic sphere or a tube over totally geodesic complex hyperbolic plane in [Formula: see text]. Moreover, [Formula: see text]-parallel real hypersurfaces in [Formula: see text] and [Formula: see text] under some other conditions are classified and these results extend Suh’s in [Characterizations of real hypersurfaces in complex space forms in terms of Weingarten map, Nihonkai Math. J. 6 (1995) 63–79] and Kon–Loo’s in [On characterizations of real hypersurfaces in a complex space form with [Formula: see text]-parallel shape operator, Canad. Math. Bull. 55 (2012) 114–126].
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献