SYMPLECTIC CONNECTIONS

Author:

BIELIAVSKY PIERRE1,CAHEN MICHEL2,GUTT SIMONE23,RAWNSLEY JOHN4,SCHWACHHÖFER LORENZ5

Affiliation:

1. Univ. Cath. Louvain, Dépt de Math, ch. du cyclotron 2, B-1348 Louvain-la-Neuve, Belgium

2. Université Libre de Bruxelles, Campus Plaine, CP 218, B-1050 Brussels, Belgium

3. Université de Metz, Dépt. de Math. Ile du Saulcy, F-57045 Metz Cedex 01, France

4. Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

5. Math. Institut, Universität Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany

Abstract

This article is an overview of the results obtained in recent years on symplectic connections. We present what is known about preferred connections (critical points of a variational principle). The class of Ricci-type connections (for which the curvature is entirely determined by the Ricci tensor) is described in detail, as well as its far-reaching generalization to special connections. A twistorial construction shows a relation between Ricci-type connections and complex geometry. We give a construction of Ricci-flat symplectic connections. We end up by presenting, through an explicit example, an approach to non-commutative symplectic symmetric spaces.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Darboux theorems for geometric structures induced by closed forms;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-06-20

2. Hamiltonian Lie algebroids;Memoirs of the American Mathematical Society;2024-03

3. Quantum geodesics in quantum mechanics;Journal of Mathematical Physics;2024-01-01

4. Noncommutative geometry and deformation quantization in the quantum Hall fluids with inhomogeneous magnetic fields;Journal of Physics A: Mathematical and Theoretical;2023-10-18

5. Bernhard Riemann 1861 revisited: existence of flat coordinates for an arbitrary bilinear form;Mathematische Zeitschrift;2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3