A combination of Lie group-based high order geometric integrator and delta-shaped basis functions for solving Korteweg–de Vries (KdV) equation

Author:

Polat Murat1,Oruç Ömer1

Affiliation:

1. Department of Mathematics, Dicle University, Diyarbakr, Turkey

Abstract

In this work, we develop a novel method to obtain numerical solution of well-known Korteweg–de Vries (KdV) equation. In the novel method, we generate differentiation matrices for spatial derivatives of the KdV equation by using delta-shaped basis functions (DBFs). For temporal integration we use a high order geometric numerical integrator based on Lie group methods. This paper is a first attempt to combine DBFs and high order geometric numerical integrator for solving such a nonlinear partial differential equation (PDE) which preserves conservation laws. To demonstrate the performance of the proposed method we consider five test problems. We reckon [Formula: see text], [Formula: see text] and root mean square (RMS) errors and compare them with other results available in the literature. Besides the errors, we also monitor conservation laws of the KDV equation and we show that the method in this paper produces accurate results and preserves the conservation laws quite good. Numerical outcomes show that the present novel method is efficient and reliable for PDEs.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3