Affiliation:
1. Department of Mathematics, Dicle University, Diyarbakr, Turkey
Abstract
In this work, we develop a novel method to obtain numerical solution of well-known Korteweg–de Vries (KdV) equation. In the novel method, we generate differentiation matrices for spatial derivatives of the KdV equation by using delta-shaped basis functions (DBFs). For temporal integration we use a high order geometric numerical integrator based on Lie group methods. This paper is a first attempt to combine DBFs and high order geometric numerical integrator for solving such a nonlinear partial differential equation (PDE) which preserves conservation laws. To demonstrate the performance of the proposed method we consider five test problems. We reckon [Formula: see text], [Formula: see text] and root mean square (RMS) errors and compare them with other results available in the literature. Besides the errors, we also monitor conservation laws of the KDV equation and we show that the method in this paper produces accurate results and preserves the conservation laws quite good. Numerical outcomes show that the present novel method is efficient and reliable for PDEs.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Physics and Astronomy (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献