Affiliation:
1. School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, Nanguan Zone, China
Abstract
In this paper, we study non-integrable distributions in a Riemannian manifold with a semi-symmetric metric connection, a kind of semi-symmetric non-metric connection and a statistical connection. We obtain the Gauss, Codazzi, and Ricci equations for non-integrable distributions with respect to the semi-symmetric metric connection, the semi-symmetric non-metric connection and the statistical connection. As applications, we obtain Chen’s inequalities for non-integrable distributions of real space forms endowed with a semi-symmetric metric connection and a kind of semi-symmetric non-metric connection. We give some examples of non-integrable distributions in a Riemannian manifold with affine connections. We find some new examples of Einstein distributions and distributions with constant scalar curvature.
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献