TRANSGRESSION FORMS IN DIMENSION 4

Author:

SALAVESSA ISABEL M. C.1,DO VALE ANA PEREIRA2

Affiliation:

1. Centro de Física das Interacções Fundamentais, Instituto Superior Técnico, Edifício Ciência, Piso 3, 1049-001 Lisboa, Portugal

2. Centro de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Abstract

We compute explicit transgression forms for the Euler and Pontrjagin classes of a Riemannian manifold M of dimension 4 under a conformal change of the metric, or a change to a Riemannian connection with torsion. These formulas describe the singular set of some connections with singularities on compact manifolds as a residue formula in terms of a polynomial of invariants. We give some applications for minimal submanifolds of Kähler manifolds. We also express the difference of the first Chern class of two almost complex structures, and in particular an obstruction to the existence of a homotopy between them, by a residue formula along the set of anti-complex points. Finally we take the first steps in the study of obstructions for two almost quaternionic-Hermitian structures on a manifold of dimension 8 to have homotopic fundamental forms or isomorphic twistor spaces.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3