Upper limit on the acceleration of a quantum evolution in projective Hilbert space

Author:

Alsing Paul M.1ORCID,Cafaro Carlo23ORCID

Affiliation:

1. Air Force Research Laboratory, Information Directorate, Rome, NY 13441, USA

2. University at Albany-SUNY, Albany, NY 12222, USA

3. SUNY Polytechnic Institute, Utica, NY 13502, USA

Abstract

It is remarkable that Heisenberg’s position-momentum uncertainty relation leads to the existence of a maximal acceleration for a physical particle in the context of a geometric reformulation of quantum mechanics. It is also known that the maximal acceleration of a quantum particle is related to the magnitude of the speed of transportation in projective Hilbert space. In this paper, inspired by the study of geometric aspects of quantum evolution by means of the notions of curvature and torsion, we derive an upper bound for the rate of change of the speed of transportation in an arbitrary finite-dimensional projective Hilbert space. The evolution of the physical system being in a pure quantum state is assumed to be governed by an arbitrary time-varying Hermitian Hamiltonian operator. Our derivation, in analogy to the inequalities obtained by L. D. Landau in the theory of fluctuations by means of general commutation relations of quantum-mechanical origin, relies upon a generalization of Heisenberg’s uncertainty relation. We show that the acceleration squared of a quantum evolution in projective space is upper bounded by the variance of the temporal rate of change of the Hamiltonian operator. Moreover, focusing for illustrative purposes on the lower-dimensional case of a single spin qubit immersed in an arbitrarily time-varying magnetic field, we discuss the optimal geometric configuration of the magnetic field that yields maximal acceleration along with vanishing curvature and unit geodesic efficiency in projective Hilbert space. Finally, we comment on the consequences that our upper bound imposes on the limit at which one can perform fast manipulations of quantum systems to mitigate dissipative effects and/or obtain a target state in a shorter time.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3