Recurrent conformal 2-forms on pseudo-Riemannian manifolds

Author:

Mantica Carlo Alberto1,Suh Young Jin2

Affiliation:

1. Physics Department, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy

2. Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea

Abstract

In this paper, we introduce the notion of recurrent conformal 2-forms on a pseudo-Riemannian manifold of arbitrary signature. Some theorems already proved for the same differential structure on a Riemannian manifold are proven to hold in this more general contest. Moreover other interesting results are pointed out; it is proven that if the associated covector is closed, then the Ricci tensor is Riemann compatible or equivalently, Weyl compatible: these notions were recently introduced and investigated by one of the present authors. Further some new results about the vanishing of some Weyl scalars on a pseudo-Riemannian manifold are given: it turns out that they are consequence of the generalized Derdziński–Shen theorem. Topological properties involving the vanishing of Pontryagin forms and recurrent conformal 2-forms are then stated. Finally, we study the properties of recurrent conformal 2-forms on Lorentzian manifolds (space-times). Previous theorems stated on a pseudo-Riemannian manifold of arbitrary signature are then interpreted in the light of the classification of space-times in four or in higher dimensions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3