Characterizations of η–ρ-Einstein solitons in spacetimes and f(ℛ)-gravity

Author:

De Uday Chand1ORCID,Sardar Arpan2ORCID,Mofarreh Fatemah3ORCID

Affiliation:

1. Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India

2. Department of Mathematics, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India

3. Department of Mathematical Science, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11546, Saudi Arabia

Abstract

A generalized Robertson–Walker spacetime is not, in general, a perfect fluid spacetime and the converse is not, in general, true. In this paper, we show that if a perfect fluid spacetime admits an [Formula: see text]–[Formula: see text]-Einstein soliton, then the integral curves generated by the velocity vector field [Formula: see text] are geodesics and the acceleration vector vanishes. Also, we show that if a perfect fluid spacetime with Killing velocity vector field admits a gradient [Formula: see text]–[Formula: see text]-Einstein soliton, then the spacetime represents either dark matter era or, the acceleration vector vanishes. Next, we show that if a generalized Robertson–Walker spacetime admits an [Formula: see text]–[Formula: see text]-Einstein soliton, then it becomes a perfect fluid spacetime. Finally, we prove that in a dark matter fluid with vanishing vorticity satisfying gradient [Formula: see text]–[Formula: see text]-Einstein soliton in [Formula: see text]-gravity with constant Ricci scalar, either the energy density and isotropic pressure are constant or, the potential function [Formula: see text] remains invariant under the velocity vector [Formula: see text]. Also, for two models [Formula: see text] and [Formula: see text] ([Formula: see text] = constant and [Formula: see text] is the Ricci scalar of the spacetime), various energy conditions in terms of the Ricci scalar are examined and state that the Universe is in an accelerating phase and satisfies the weak, null and dominant energy conditions, but violate the strong energy condition.

Funder

Princess Nourah Bint Abdulrahman University

UGC

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3