A note on classification of dust static plane symmetric space-times via proper curvature collineations in f(R) gravity

Author:

Nazir Aasma1,Shabbir Ghulam2ORCID,Hussain Fiaz1,Jamal S.3,Ramzan M.1

Affiliation:

1. Department of Mathematics, The Islamia University of Bahawalpur, 63100, Pakistan

2. Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Swabi, KPK, Pakistan

3. School of Mathematics, University of the Witwatersrand, Johannesburg, Wits 2001, South Africa

Abstract

In this paper, we classify dust static plane symmetric (SPS) space-times via proper curvature collineations (CCs) in the [Formula: see text] gravity using the rank of [Formula: see text] Riemann matrix and direct integration technique. Classifying the above mentioned space-times, we find that there arise six cases corresponding to specific values of the function [Formula: see text]. Inspecting all the cases, we reach at the fact that there exist two cases where the space-times admit proper CCs which form an infinite dimensional vector space (IDVS). In rest of the four cases, the space-time becomes either flat or CCs become the killing vector fields (KVFs).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometry of conformally symmetric generalized Vaidya spacetimes;International Journal of Geometric Methods in Modern Physics;2023-02-22

2. Cross-Border Technology Integration in the Field of Artificial Intelligence Based on Neural Network Algorithm;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023

3. A note on proper conformal vector fields of Bianchi type-I perfect fluid space-times in f(R,T) gravity;International Journal of Geometric Methods in Modern Physics;2022-10-07

4. A note on classification of Kantowski–Sachs and Bianchi type III solutions in f(T) gravity via conformal vector fields;International Journal of Geometric Methods in Modern Physics;2022-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3