Information geometric aspects of probability paths with minimum entropy production for quantum state evolution

Author:

Gassner Steven1,Cafaro Carlo1ORCID,Ali Sean A.2,Alsing Paul M.3

Affiliation:

1. SUNY Polytechnic Institute, Albany, NY 12203, USA

2. Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA

3. Air Force Research Laboratory, Information Directorate, Rome, NY 13441, USA

Abstract

We present an information geometric analysis of both entropic speeds and entropy production rates arising from geodesic evolution on manifolds parametrized by pure quantum states. In particular, we employ pure states that emerge as outputs of suitably chosen [Formula: see text] time-dependent Hamiltonian operators that characterize analog quantum search algorithms of specific types. The [Formula: see text] Hamiltonian models under consideration are specified by external time-dependent magnetic fields within which spin-[Formula: see text] test particles are immersed. The positive definite Riemannian metrization of the parameter manifold is furnished by the Fisher information function. The Fisher information function is evaluated along parametrized squared probability amplitudes obtained from the temporal evolution of these spin-[Formula: see text] test particles. A minimum action approach is then utilized to induce the transfer of the quantum system from its initial state to its final state on the parameter manifold over a finite temporal interval. We demonstrate in an explicit manner that the minimal (that is, optimum) path corresponds to the shortest (that is, geodesic) path between the initial and final states. Furthermore, we show that the minimal path serves also to minimize the total entropy production occurring during the transfer of states. Finally, upon evaluating the entropic speed as well as the total entropy production along optimal transfer paths within several scenarios of physical interest in analog quantum searching algorithms, we demonstrate in a transparent quantitative manner a correspondence between a faster transfer and a higher rate of entropy production. We therefore conclude that higher entropic speed is associated with lower entropic efficiency within the context of quantum state transfer.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3