Effects of variable equations of state on the stability of nonlinear electrodynamics thin-shell wormholes

Author:

Javed Faisal1,Fatima G.2,Mustafa G.1ORCID,Övgün Ali3

Affiliation:

1. Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China

2. Mathematics, University of Management and Technology, Johar Town Campus, Lahore 54782, Pakistan

3. Physics Department, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey

Abstract

This paper explores the role of nonlinear electrodynamics on the stable configuration of thin-shell wormholes formulated from two equivalent geometries of Reissner–Nordström black hole with nonlinear electrodynamics. For this purpose, we use cut and paste approach to eliminate the central singularity and event horizons of the black hole geometry. Then, we explore the stability of the developed model by considering different types of matter distribution located at thin-shell, i.e. barotropic model and variable equations of state (phantomlike variable and Chaplygin variable models). We use linearized radial perturbation to explore the stable characteristics of thin-shell wormholes. It is interesting to mention that Schwarzschild and Reissner–Nordström black holes show the unstable configuration for such type of matter distribution while Reissner–Nordström black hole with nonlinear electrodynamics expresses stable regions. It is found that the presence of nonlinear electrodynamics gives the possibility of a stable structure for barotropic as well as variable models. It is concluded that stable region increases for these models by considering higher negative values of coupling constant [Formula: see text] and the real constant [Formula: see text].

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3