Affiliation:
1. Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia Edificio 6, 80126 Napoli, Italy
Abstract
In the 60s, DeWitt discovered that the advanced and retarded Green functions of the wave operator on metric perturbations in the de Donder gauge make it possible to define classical Poisson brackets on the space of functionals that are invariant under the action of the full diffeomorphism group of spacetime. He therefore tried to exploit this property to define invariant commutators for the quantized gravitational field, but the operator counterpart of such classical Poisson brackets turned out to be a hard task. On the other hand, in the mathematical literature, it is by now clear that, rather than inverting exactly an hyperbolic (or elliptic) operator, it is more convenient to build a quasi-inverse, i.e. an inverse operator up to an operator of lower order which plays the role of regularizing operator. This approximate inverse, the parametrix, which is, strictly, a distribution, makes it possible to solve inhomogeneous hyperbolic (or elliptic) equations. We here suggest that such a construction might be exploited in canonical quantum gravity provided one understands what is the counterpart of classical smoothing operators in the quantization procedure. We begin with the simplest case, i.e. fundamental solution and parametrix for the linear, scalar wave operator; the next step are tensor wave equations, again for linear theory, e.g. Maxwell theory in curved spacetime. Last, the nonlinear Einstein equations are studied, relying upon the well-established Choquet-Bruhat construction, according to which the fifth derivatives of solutions of a nonlinear hyperbolic system solve a linear hyperbolic system. The latter is solved by means of Kirchhoff-type formulas, while the former fifth-order equations can be solved by means of well-established parametrix techniques for elliptic operators. But then the metric components that solve the vacuum Einstein equations can be obtained by convolution of such a parametrix with Kirchhoff-type formulas. Some basic functional equations for the parametrix are also obtained, that help in studying classical and quantum version of the Jacobi identity.
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)